Recherche

Deep Learning avec Keras et TensorFlow

Extraits

ActuaLitté

Non classé

Deep Learning avec Keras et TensorFlow

Cet ouvrage, conçu pour tous ceux qui souhaitent s'initier au deep learning (apprentissage profond), est la traduction de la deuxième partie du best-seller américain Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow (2e édition). Le deep learning est récent et il évolue vite. Ce livre en présente les principales techniques : les réseaux de neurones profonds, capables de modéliser toutes sortes de données, les réseaux de convolution, capables de classifier des images, les segmenter et découvrir les objets ou personnes qui s'y trouvent, les réseaux récurrents, capables de gérer des séquences telles que des phrases, des séries temporelles, ou encore des vidéos, les autoencodeurs qui peuvent découvrir toutes sortes de structures dans des données, de façon non supervisée, et enfin le reinforcement learning (apprentissage par renforcement) qui permet de découvrir automatiquement les meilleures actions pour effectuer une tâche (par exemple un robot qui apprend à marcher). Ce livre présente TensorFlow, le framework de deep learning créé par Google. Il est accompagné de notebooks Jupyter qui contiennent tous les exemples de code du livre, afin que le lecteur puisse facilement tester et faire tourner les programmes. Il complète un premier livre du même auteur intitulé Machine Learning avec Scikit-Learn.

05/2020

ActuaLitté

Intelligence artificielle

Deep Learning avec Keras et TensorFlow

L'objectif de cet ouvrage est de vous expliquer les concepts fondamentaux du Deep Learning et de vous montrer, grâce à de nombreux exemples de code accessibles en ligne, comment les mettre en pratique. Cette troisième édition tient notamment compte de la nouvelle version de TensorFlow 2, outil open source très efficace pour entraîner des réseaux de neurones artificiels. - Construire et former de nombreuses architectures de réseaux de neurones pour classification et régression à l'aide de TensorFlow 2. - Découvrir la détection d'objets, la segmentation sémantique, les mécanismes d'attention, les modèles de langage, les réseaux antagonistes génératifs, etc. - Explorer l'API Keras, l'API officielle de haut niveau pour TensorFlow 2. - Produire des modèles TensorFlow à l'aide de TF Data, de TF Transform, de l'API de stratégies de distribution et de TF Serving. - Déployer sur la plateforme Google Cloud AI ou sur des appareils mobiles. - Créer des agents d'apprentissage autonomes avec le Reinforcement Learning, y compris en utilisant la bibliothèque TF-Agents. Tous les exemples de code sont disponibles en ligne sous la forme de notebooks Jupyter à l'adresse suivante : https : //github. com/ageron/handson-ml2

03/2024

ActuaLitté

Intelligence artificielle

TensorFlow et Keras

Ce livre sur TensorFlow et sur son API intégrée Keras contient toutes les informations nécessaires pour assister le lecteur dans la mise au point, pas à pas, d'une intelligence artificielle reposant sur les pratiques courantes du deep learning et du machine learning. Autour de l'usage de notions associées aux tenseurs et à la différentiation qui représentent les deux points forts du framework, l'auteur présente dans ce livre un projet d'intelligence artificielle incarnée : celui d'un robot humanoïde. Ainsi, en plus des notions de base de la robotique, les principaux savoir-faire permettant de coder la partie algorithmique de la création de cette IA incarnée sont traités. Principalement construit à partir d'algorithmes liés à la cognition et à la prise de décision se mettant naturellement en oeuvre via Keras, ce parcours didactique permet donc au lecteur d'étudier : la gestion de cinématique et la planification de trajectoire ; le contrôle-commande et l'asservissement ; la reconnaissance visuelle d'objets ; le traitement du son ; le langage naturel ; la génération de séquences ou d'images et, de façon plus générale, l'automatisation des calculs d'ingénierie relatifs aux grandes matrices, aux très grands tenseurs multidimensionnels et à la différentiation de fonctions très élaborées. L'auteur propose également dans ce livre une initiation aux outils mathématiques de référence de la discipline, dans l'optique d'accéder à un premier niveau de compréhension des articles de recherche. Sans concession simpliste en termes de formulation des expressions mathématiques, elle ne s'attarde sur aucun fondement théorique et fait l'impasse sur les difficultés conceptuelles qui pourraient troubler le lecteur n'ayant aucune pratique des mathématiques du supérieur. A la fin du livre, le lecteur peut trouver un chapitre consacré à l'exploitation et la mise en ligne de solutions d'intelligence artificielle, ainsi que des annexes, qui font partie intégrante de l'ouvrage et qui détaillent de nombreuses manipulations de tenseurs facilitées par l'usage de TensorFlow. Chaque chapitre du livre comprend également une bibliographie soignée en rapport direct avec les propos de l'auteur ou des liens vers du code tiers répertorié sur son espace GitHub. Des extraits choisis du code de l'ouvrage sont disponibles en téléchargement sur le site www.editions-eni.fr.

12/2019

ActuaLitté

Non classé

Data Scientist et langage R

Ce livre, pour lequel deux axes de lectures sont possibles, a pour objectif de proposer une formation complète et opérationnelle sur les data sciences. Le premier axe permet au lecteur d'apprendre à délivrer des solutions complètes via l'usage du langage R et de son écosystème, et le second lui permet d'acquérir une culture approfondie des data sciences tout en faisant abstraction du détail du code R grâce à l'utilisation d'un outillage interactif qui ne nécessite pas d'apprendre à coder en R. Ainsi, les auteurs proposent un parcours didactique et professionnalisant qui, sans autre prérequis qu'un niveau Bac en mathématiques et une grande curiosité, permet au lecteur : - de s'intégrer à une équipe de data scientists ; - d'aborder la lecture d'articles de recherche en IA ou data sciences ; - de développer en langage R ; - et de dialoguer avec une équipe projet comprenant des data scientists. Le livre ne se cantonne pas aux algorithmes classiques du Machine Learning (arbres de décision, réseaux neuronaux...), il aborde divers sujets importants comme le traitement du langage naturel, les séries temporelles, la logique floue, la manipulation des images. Les sujets pratiques ou difficiles ne sont pas éludés. Le livre appréhende l'accès aux bases de données, les processus parallèles, la programmation fonctionnelle et la programmation objet, la création d'API, le partage de résultats d'analyse avec R Markdown et les dashboard Shiny, l'étude des représentations cartographiques ou encore l'implémentation du Deep Learning avec TensorFlow-2 et Keras. A la demande des lecteurs, cette troisième édition présente également une ouverture vers le langage Python et son interface avec R ainsi que l'installation d'une application R/shiny accessible sur internet via un serveur Linux abrité sur un cloud professionnel. Une extension vers l'utilisation de R pour les calculs numériques et les calculs mathématiques pour l'ingénierie dans le même esprit que MatLab et l'usage basique d'un outil de prototypage rapide de modèles de Machine Learning (BigML) en "point and click" permettra aussi au lecteur ne voulant pas utiliser R de produire des modèles de prédiction sans coder ! La dynamique de l'ouvrage soutient le lecteur pas à pas dans sa découverte des data sciences et l'évolution de ses compétences théoriques et pratiques. Le manager pourra surfer sur l'ouvrage après avoir lu attentivement le bestiaire des data sciences de l'introduction, qui sans vulgarisation excessive présente le sujet en faisant l'économie de mathématiques ou de formalismes dissuasifs. Les programmes R décrits dans le livre sont accessibles en téléchargement sur le site www. editions-eni. fr et peuvent être exécutés pas à pas.

07/2021