Les fonctions continues sont utiles pour la résolution des équations aux dérivées partielles, et plus particulièrement pour la construction des distributions à valeurs dans un espace de Neumann où toute suite de Cauchy converge. Cet ouvrage examine la dérivation partielle, la construction de primitive (qui en est l'application réciproque), l'intégration ainsi que la pondération des fonctions à valeurs dans un espace de Neumann. Il présente des généralisations, nouvelles, de propriétés classiques pour les valeurs dans un espace de Banach. Fonctions continues privilégie les méthodes simples, les semi-normes, les propriétés séquentielles, afin de rendre ces outils accessibles au plus grand nombre sans en restreindre la généralité.
Commenter ce livre